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BRIEF COMMUNICATION

AN INVESTIGATION OF TWO-PHASE FLOW
MEASUREMENT WITH ORIFICES FOR
LOW-QUALITY MIXTURES

H. J. Zuang, S. J. Lu and G. Z. YU
Department of Chemucal Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China

(Recewed 1 September 1990, in revised form I August 1991)

1. INTRODUCTION

Measurement of gas-liquid two-phase flow rates is of interest in many fields of engineering, such as
chemical, geothermal engineering, petroleum, power and nuclear energy. Although many methods,
including ultrasonic waves, laser techniques, radiation etc., have been studied (Hewitt 1978;
Reimann 1982), measurement of two-phase flow rates via orifices has received increasing attention
in the last three decades. Numerous orifice equations for gas-liquid mixtures have been developed
and some typical equations were proposed by Murdock (1962), James (1965), Chisholm (1967,
1974), Smith & Leang (1975) and Lin (1982). These equations can mostly be described by the

following equation:
CYAFa
G = —~— Ko+/2 APrepc. [1]

where G is the mass flow rate of the gas-liquid mixture, C is the orifice discharge coefficient, Y is the
compressibility coefficient of the fluid, A is the orifice flow area, Fa is the orifice thermal expansion
factor, B is the ratio of the orifice diameter to the internal pipe diameter, AP, is the pressure drop
across the orifice for the two-phase mixture, pg is the density of the gas phase and K is called
the gas phase modified coefficient, which is dependent mainly on quality and the gas-liquid density
ratio, and has several different forms (proposed by different authors). Murdock (1962) employed
a separated flow model and derived the following two-phase correlation equation:
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where C; and C| are the orifice discharge coefficients for gas and liquid, respectively, Y is the
compressibility coefficient of the gas phase and y is the quality.

James (1965) used an effective mixture density to modify a homogeneous model, resulting in the
expression

KG=

(2]
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Other authors proposed different modified two-phase correlation equations based on either the
separated flow model or the homogeneous flow model. But in previous works, almost all orifice
equations were derived from experiments with quality y > 1%. Some equations cannot be used
particularly well and others become invalid at low quality—see Murdock’s (1962) equation [2]. But
low quality is widespread if the ratio of gas density to liquid density is small, even though the void
fraction ¢ is large. For this reason, our work is aimed at the measurement of two-phase flow with
sharp-edged orifices for low quality. The experiments were made with an air~water flow system in
the quality range 0.007-1%.
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2. THEORY

For low-quality gas-liquid two-phase flow, the orifice equation for metering the mass flow rate
has the following form (Zhang 1985):

CrpYrpdFa
= —TP LLd KL 2 APTPPL ’ [4]

where Y1p is the compressibility coefficient of the two-phase mixture and K is the liquid modified
coefficient. Note that in the above equation the liquid orifice discharge coefficient C; can be used
to replace the two-phase mixture orifice discharge coefficient Cyp if the Reynolds number for the
liquid phase Re; is greater than the critical Reynolds number Re, (Matter et al. 1979). But the
compressibility coefficient Y will be different from the gas and liquid compressibility coefficients
Y; and Y, for most cases. A simple theoretical equation for calculating Yp, proposed by Zhang
(1985), is as follows:

Yo=Y (1 —¢)+ Yge, [5]

where ¢ is the void fraction. Because Y; = 1, [5] becomes
YTP=1_€+€YG' [6]

It is rather difficult to obtain a simple relationship for the modified coefficient X, from a
theoretical analysis, so K; will be determined experimentally. It is thought that K| is a function
of the density ratio pg/p. and of void fraction or quality, but for low quality it is better to use
the void fraction as a parameter in the modified coefficient K| instead of normal quality, because
in such a range of quality the void fraction will increase or decrease significantly with a small change
in quality.

3. EXPERIMENTAL APPARATUS AND RESULTS

Experiments were carried out in a two-phase flow measurement apparatus, as shown in figure 1.
Air and water were used as the gas and liquid phases, respectively. Before they were mixed, air
and water flow rates were measured individually. The test gas mass velocity ranged from 0.9 to
9.1 kg/m? - s with the liquid mass velocity from 840 to 1648 kg/m? - s, while the quality ranged from
0.007 to 1%. The sharp-edged orifices used for the tests were mounted on a horizontal pipe with
i.d. = 50.8 mm. The diameters of the orifices were 25.36 and 21.42 mm, with a diameter ratio of
B =0.499 and B = 0.422, respectively. The pressure taps on each orifice were standard corner taps
with carrier rings. Before the tests the orifices were carefully calibrated with single-phase water.
During the tests the total mass flow rates and quality were obtained from the readings of the gas
and liquid flowmeters. Void fraction was measured by two quick-closing valves which were installed

Figure 1. Schematic diagram of the experimental apparatus: 1, compressor; 2, filter; 3, gas flowmeter;
4, pump; 5, hquid flowmeter, 6, quick-closing valves; 7, orfice
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Figure 4 Experimental values of K| vs quality for § =0499  Figure 5 Experimental values of K| vs quality for § = 0.422.

on the two sides of the sharp-edged orifice. A pressure gauge was installed before the orifice to
indicate the pressure of the two-phase flow. If AP, is measured by a differential pressure
transmitter connected to the orifice, K can be calculated from [4]. Since the tests were performed
at normal temperature, the orifice thermal expansion factor Fa is unity and the water density is
about 998 kg/m’. All the experimental data are summarized in table 1. Figures 2 and 3 show the
experimental values of K, vs void fraction, and figures 4 and 5 are the experimental values of K|
vs quality. In figures 2-5, my, is the liquid mass flow rate per unit area when the gas flow rate is
zero; with an increase in the gas flow rate the liquid flow rate will decrease, because the position
of the valve for controlling the liquid phase flow rate has not changed.

4. COMPARISON WITH RESULTS FROM PREVIOUS WORK

Because Murdock’s (1962) correlation equation for two-phase flow does not apply at low quality,
comparisons can only be made with the homogeneous flow model and the James model here.
For the homogeneous flow model, the theoretical equation for the liquid phase modified coefficient

K; is as follows:
—_— (7]
PL
l—==1)+1
(PG )

where n = 1. Substituting experimental data for y, pg and p into [7)], the theoretical K| can be
obtained. The errors between the actual K| and the K, value calculated from [7] are shown in figure
6(a). Figure 6(a) shows that the actual values are greater than the calculated values and the errors
increase with increasing quality.

For the James (1965) model, the equation for K| is the same as [7], but n = 1.5. The deviation
of actual K| values from those given by [7] is shown in figure 6(b). It is seen from the figure that
most data are negative, which means that the actual K| is less than the calculated K| . It is also
found that the absolute errors are less than those for the homogeneous model.
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Figure 6 Deviation of experimental K, values from those from different models.

5. NEW EQUATIONS

Because most errors between actual and calculated K| values are greater than zero for the
homogeneous flow model, but less than zero for the James (1965) model, it is thought that [7] may
be appropriate for two-phase flow with n being from 1 to 1.5. Using the experimental data shown
in table 1, n is found to be

n=125+025%/%. 8]

When y approaches unity, n = 1.5, i.e. it becomes the same as the James model. If [8] is used to
calculate K;, we find it is quite close to the experimental K; shown in figure 6(c).

If the void fraction is employed as a parameter in the modified coefficient K; then, from the
homogeneous flow model, the theoretical equation is

K, = e"t<”—°—1)+1, [9]
PL

where n, = 1. But this equation has significant errors compared with the experimental data. To fit
the data, the method of least squares was used and we obtained n, = 4. Figure 6(d) shows the
differences between the actual K; values and those calculated from [9].
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6. DISCUSSION AND CONCLUSIONS

For a gas-liquid mixture of low quality, the two-phase flow rate can be measured with
sharp-edged orifices. If the quality is used to modify the orifice equation, then the total mass flow
rate of the two-phase mixture can be calculated using the following equation:

2 APrpp

of PL
X (Pc 1) +1
where n = 1.25+ 0.25 \7;

The orifice equation for the single-phase flow rate may be modified using the void fraction when
the quality of the mixture is low, because under these conditions the void fraction will change more
sharply than the quality and have greater values. Introducing void fraction, the modified orifice
equation becomes

G = C.YpAFa

VT

[10]

Y
G = CeYmdfa 2APTpp,_|:e“<%9—l)+l]. [11]

N L

Although the deviation of experimental K, values from those calculated by [9] is not sufficiently
small [see figure 6(d)], [9] is very useful for low quality. If the void fraction is estimated, the liquid
modified coefficient may be evaluated quickly. Moreover, for ¢ £0.5, then from [9] we get
K <0.96, which means that there is no significant difference between the modified orifice equation
for the two-phase flow rate and the common orifice equation for the single-phase liquid flow rate.
Furthermore, if the compressibility coefficient Y1p is considered, we can expect that the maximum
error in the mass flow rate will be within 10% if the orifice equation of single-phase liquid flow
is used to measure the two-phase mass flow rate, because for most cases the compressibility
coefficient is <0.95.

The above conclusions are derived from experiments with an air-water two-phase flow system.
To contain their general validity additional experiments with different two-phase mixtures, pipe
diameters and density ratios are required. However, the present work may be instructive in the
further study of the measurement of gas-liquid mixture at low quality.
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